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The effects of symmetry breaking on the multiplet structure of composite particles are studied. The 
Sakata triplet is used for illustrations, and simple special models are studied where some mass regularities 
remain even in the presence of a fairly large symmetry breaking. 

THE recent experimental discovery of the Or 
hyperon1 and the precise agreement of the ob

served baryon decuplet masses with the Gell-Mann-
Okubo mass formula2 based on unitary symmetry 
makes more acute the question why a result obtained 
by treating the symmetry breaking as small should 
work so well, since it is known that the unitary sym
metry is badly broken. It seems useful, therefore, to 
study some special models where the symmetry is 
badly broken in the sense to be described below, and 
where some mass regularities nevertheless remain. 

Specifically, we wish to consider composite systems 
made up of two or more particles, each of which belong 
to some irreducible representation of the basic sym
metry group. Without symmetry breaking, the com
posite particles also belong to some irreducible repre
sentations. When the symmetry is broken, however, 
composite particles belonging to different irreducible 
representations may get mixed; or, worse still, the uni
formity in interactions may be destroyed to the extent 
that some members of an irreducible representation 
cease to be bound (or cease to be resonances) while the 
other members still are. It is symmetry badly broken in 
this sense that we would like to study. Clearly in this 
case the assignment of observed approximate multiplets 
to irreducible representations of the group becomes 
highly ambiguous. The question is not so much one of 
group theory as one of dynamics. Unfortunately, dy
namics is what we do not know how to treat properly. 
So in the following we will only consider an extremely 
crude and naive model, mainly to illustrate the break
ing up of irreducible representations. 

We will take as the basis of our model the unitary 
Sakata triplet, supplemented with some crude assump
tions concerning the effects of symmetry breaking. If 
one does not wish to introduce more than three basic 
fields, to avoid either the use of highly unobservable 
fields or the possible emergence of groups larger than 
SU3, the Sakata triplet is still the most appealing. On 
the other hand, the experimental occurrence of the re
action PP —» KiK% shows that the unitary Sakata sym-
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metry is badly broken.8 It is therefore ideal for our con
siderations. Let us consider the formation of bound 
states. When in suitable configurations there is sup
posed to be a strong attractive force between the 
Sakata triplets and anti-Sakata triplets of the order of 
some BeV per pair, causing the formation of composite 
systems, whereas the binding between Sakata triplets 
and Sakata triplets is supposed to be of the order of 
some MeV per pair. We consider the symmetry between 
A and N to manifest itself through the equality of the 
binding energies between systems which are identical 
in those respects such as the relative angular momen
tum and spin orientation of the constituent particles 
as well as their exchange symmetry properties, but 
differ in that a nucleon in one system is replaced by a A 
in the other.4 Two such systems will have the same mass 
before the symmetry is broken. After the symmetry 
breaking the mass of the latter system will differ from 
the former system by (MA—MN—A), where A repre
sents the difference in the binding energies of a A and a 
nucleon in the system. This holds for fermion systems. 
For boson systems it has been customary to take the 
(mass)2 as the proper variable for considering mass rela
tions, although the precise reason for this is not yet 
completely understood. We will, nevertheless, also use 
the (mass)2 variable in the sense that for two boson 
systems which differ by the replacement of a nucleon 
by a A, the difference in the squares of the masses is 
given by (MA2—M^-~ 52). In Appendix II we give a 
simple perturbation computation where such a (mass)2 

dependence is natural, although the computation should 
not be taken seriously, and the origin at the (mass)2 de
pendence is best to be considered as still unknown.5 

So far the discussion is fairly general. We now assume 
specifically that A and 5 are approximately constant 
within a multiplet; i.e., when one replaces a nucleon by 
a A the difference in binding energy is A, and when one 
replaces a second nucleon by a A, the additional differ
ence in binding energy is again A. Such an assumption is 
plausible if (MA-~MN)>A, and (MA

2-MN
2)>82, be

cause then the changes in A are presumably even smaller 
than A so that (MA—MN)^>(changes in A). One may 
ask, however, whether it is consistent to have 

3 C. A. Levinson, H. J. Lipkin, S. Meshkov, A. Salam, and R. 
Munir, Phys. Letters 1, 125 (1962). 

4 The connection between such "substitution symmetry" and 
unitarity symmetry is discussed in Appendix I. 

6 See, however, Ref. 7. 
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(MA—MN)> A, i.e., to have large mass shifts and small 
shifts in the binding energies, particularly since the 
binding energies themselves are of the order of some 
BeV per pair. For instance, if we consider the attraction 
between the baryons and antibaryons as arising from 
the exchange of particles, the range of interaction will be 
changed when the masses of the exchanged particles are 
shifted by symmetry breaking. The change in range will 
in turn affect the binding energies. However, it is in
structive to recall in this respect some results from the 
analysis of A hypernuclei. It might seem at first that the 
A-nuclei binding should be much weaker than the cor
responding nucleon-nuclei binding, both because K ex
change is of a much shorter range (single pion exchange 
being forbidden for A), and because AKN coupling is 
relatively weak. The analysis by Dalitz and co-workers6 

found, however, that this is not so, that 2w exchange is 
probably more important so that the range is only 
l/(2mT) and not 1/MK, and that A binding is approxi
mately of equal strength as the corresponding nucleon 
binding. Of course, one should not compare directly the 
A-nuclei binding with the presumed tighter binding of A 
to antibaryons. But it may be argued that the tighter 
the binding, the more important is the contribution from 
the exchange of many particles, which are relatively in
sensitive to the A—N differences in quantum numbers. 
In any case, we will adopt as our working hypothesis 
that (MA—MN) > A, and that the change in A within a 
multiplet is negligible. Recapitulating, we have within 
this model the ''substitution rule," i.e., for fermion 
composite systems which are similar except for the re
placement of a nucleon by a A, the mass difference be
tween the two is given by (MA—MN—&)\ and for 
boson systems, the difference between the squares of the 
masses is given by (MA2—MN2~~82)', A and 8 are con
stant within a multiplet. 

Having outlined the assumptions, we now examine the 
consequences. 

A. BOSON SYSTEMS 

Let us first consider boson systems made up of a 
baryon and an antibaryon. Out of the 3 Sakata triplets 
one obtains nine bosons. If one considers the mass 
splitting resulting from symmetry breaking by using the 
substitution rule above, omitting for the moment the 
singlet-octet splitting and the isotopic-spin splitting, 
one obtains the following 3 levels: 

AA Mz, 

An, Ap, pA, nA Mi y 

(l/VZ)(pp+nn); np, pp, (1/^/2) (pp-nil) Mu 

On the other hand, if one considers the singlet-octet 
splitting resulting from symmetry-preserving interac
tion, omitting for the moment the symmetry breaking 

•R. H- Dalitz and B. W. Downs, Phys. Rev. I l l , 967 (1958). 

effects, one gets two levels, 

(l/y/3)(pp+nn+Al) ms, 

Ap, An, pA, nA, (\/^lT)(pp—nn), 
pn, np, (l/61/2)(pp+nn—2AA) m0. 

The problem of which classification should be used as 
a first approximation is in this case an unambiguous 
and quantitative one; one simply compares (M^—M2) 
= (M2—Mi) with (m8—m0). If (M2—Mi) is larger, the 
first classification should be used. On the other hand, if 
(ms—m0) is much larger, the second classification should 
be used, with the symmetry breaking effects put in as a 
further correction. Now (M^—Mj*) can be estimated in 
this model to be of the order of A—N (mass)2 difference, 
but (ms—m0) cannot be estimated from a general 
knowledge of the strength of the symmetry-preserving 
interaction alone, because the singlet-octet splitting 
may depend very much on the particular configuration 
of the composite systems. We will therefore have to 
look at the physical spectra. 

First let us consider the vector bosons. Before one 
decides which classification to use, one can at least 
assign (K*)+ to A/>, and p+ to ftp, this assignment being 
the same for the two different classifications. This gives 
(M2—M 1) = 138 MeV. From the masses of K* and p and 
using the Okubo formula one can also find m0 (i.e., 
f̂ octet in the absence of symmetry breaking) to be 
me=845 MeV. On the other hand, m8 should not be too 
far from the mass of co(728 MeV), if 0 is considered as 
the singlet. Thus (M2—Mi)> |mw—m0^%\ > |m8—m0\. 
So in this case, the first classification should be used, and 
one assigns7 

p^{np,(\l^)(pp-nn),pfi\, 

a)*=(l/^)(pp+nn), 

K*~ (An,Ap,pA,nA), 

0=AA. 

The "substitution rule" gives the mass relations 

mp
2=mj, (1) 

mk^-mp
2^m^-mk*

2^(MA2-MN
2-82). (2) 

Equation (2) with mk* and mfi as inputs gives m^= 1010 
MeV, as compared with the observed 1020 MeV. Also 
52=0.226 BeV2<(MA2-MN

2). 
We next turn to the pseudoscalar particles. Here by 

similar considerations as above one finds (M2—Mi) 
= 356 MeV, but experimentally one does not see a 
particule corresponding to the singlet. Hence (m8—m0) 
>(2MN—m0)y>(M>2—M{). By our criterion it is more 
appropriate to use the second classification. Thus 

K=lpnA/2(pp-nn)>npl, 

K~ £An,Ap,pA,nA~\, 

i?«= (l/6l/2)(pp+nn~2AX). 
7 While this work is in progress we receive a report by F. Gursey, 

T. D. Lee, and M. Nauenberg (to be published) where a similar 
assignment is made. 
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From the substitution rule for mass differences one gets 

mk
2-mv

2= (Mi?-MN
2~b'2), (3) 

4m&2=3w77
2+wlr

2. (4) 

Equation (4) is, of course, just the Gell-Mann-Okubo 
formula; but Eq. (3) gives S'2=0.226 BeV2-62; i.e., 

mk2—fnr
2=mk*2—mp

2. (5) 

The amazing accuracy with which Eq. (5)8 is satis
fied by the observed masses of the particles seems to 
indicate that 5 is not only constant within a multiplet, 
but is also the same for some different multiplets.9 

B. FERMION SYSTEMS 

Next, we examine fermion systems. As is well known, 
the Sakata model does not give either octets or de-
couplets with baryon number one. Nevertheless, let us 
consider the smallest number of particles that can make 
a strangeness minus three hpyeron; it must clearly be 
composed of 2 antibaryons and 3 baryons. Suppose we 
consider the 2 antibaryons as forming a core, and re
quire it to be stable as a two-particle system. The only 
known stable system is that of the T—0, J—\ state 
(pn—np). The remaining 3 baryons taken in the com
pletely symmetric state can now combine with the 
"core" to form a baryon number one decuplet10: 

(pn—np)NNN in r==f state, 

(pn—np)NNA in T=l state, 

(pn—np)Nkk 7"=!, 

{pit—ftp) AAA T—0. 

This fits the observed decuplet nicely. From the "sub
stitution rule" one gets the equal spacing rule for mass 
splitting, with A=29 MeV <^{MK~-MN), SO that the 
assumption of the constancy of A should be particularly 
good for this multiplet. 

The fact that for boson systems 5 not only remains 
constant within a multiplet, but is also the same for 
different multiplets as indicated by Eq. (5), leads one to 
examine whether A can also be approximately the same 
for different multiplets. For example, if one considers 
the F2* at 1660 MeV11 to be obtainable from the N* at 
1512 MeV by the substitution rule, one obtains A'=30 
MeV, i.e., 

F1*(1660)~iVr*(1512)= F1*(1385)-iV*(1238), (6) 

8 This relation has also been noted by Schwinger: Phys. Rev. 
Letters 12, 237 (1964). 

9 See also Eq. (6) in the following. 
10 The three-baryon states with different symmetry properties 

can of course have very different interactions with the "core." 
11L. W. Alvarez, M. H. Alston, M. Ferro-Luzzi, D. O. Huwe, 

G. R. Kalbfleisch, et ak, Phys. Rev. Letters 10,184 (1963); P. L. 
Bastien and J. P. Berge, ibid. 10,188 (1963); and Ref. 9. M. Taher-
Zadeh, D. J. Prowse, P. E. Schlein, W. E. Slatar, D. H. Stork, 
et at., ibid. 11,470 (1963). This relation Eq. (6) will be just a coinci
dence if the*parity of Fi*(1660) turns out to be different from that 
of N* (1512). The last reference gives some indication of positive 
parity, but the evidence is not yet conclusive. 

accurate to within 1 MeV. If the particles on the left-
hand side of Eq. (6) are also formed from 5 Sakatons, 
there should be a E** at 1808 MeV, and an Or* at 
1956 MeV. 

Finally, by the same method one can also construct 
a baryon number one octet satisfying the Gell-Mann-
Okubo formula. However, having singled out N and A 
as the fundamental particles there is not more reason to 
expect that Ny A, 2, and S should form a multiplet, and 
this possibility will not be exploited. 

Needless to say, the assumption of the particular 
mechanism of binding requiring a stable core is purely 
ad hoc. We are not arguing for the plausibility of this 
particular mechanism, but rather for the possibility, 
which cannot be excluded as long as we are ignorant of 
the dynamics, that such things may happen, altering 
the connection between multiplets and irreducible rep
resentations very drastically, while still leaving some 
mass regularities which are more or less precise. The 
model considered is completely trivial, its main virtue 
being that no unphysical fields or particles need to be 
introduced. We used it to emphasize that whether a 
particular symmetry breaking is to be considered large 
or small is probably a very complicated question: It de
pends on what the symmetry breaking effect is com
pared to. In the examples above we have tried to illus
trate this twice. In the baryon example symmetry-
breaking effects of a few MeV are very small compared 
to the baryon-antibaryon binding, but are large for the 
baryon-baryon "core"; (after all, it takes only a few 
MeV's difference in binding energies to make the 
deuteron bound and the corresponding A-iV system most 
likely unbound). In the meson example the symmetry-
breaking effects of a few hundred MeV (A-N mass dif
ference) are small when compared with a large singlet-
octet splitting as was assumed for the pseudoscalar 
mesons, but are large when the singlet and the octet 
happen to lie close together as was assumed for the 
vector mesons in the example. In either the fermion or 
the boson case, the symmetry breaking effect is large in 
some respect, but are small compared to the primary 
baryon-antibaryon binding of the order of BeV's per 
pair. When one can separate out the "large" effects 
(which in these examples consist of changing the multi
plet structures), then it is not necessarily inconsistent 
that the remaining "small" effects give rise to fairly 
precise mass regularities. 
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APPENDIX I 

There has been some lack of precision in the litera
ture in speaking of the connection between unitary sym
metries and the invariance of the interaction under sub-
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stitution of one particle for another. Sometimes it is 
loosely said that unitary symmetry would imply the sub
stitution invariance; on the other hand, there are at
tempts to "derive" the unitary symmetry from the 
invariance of the interaction under substitution.12 For 
instance, in the Nagoya model12 the Sakata triplet is 
supposed to be obtained by attaching a B matter to the 
leptons e, ju, and v. Only the B matter is supposed to be 
responsible for strong interactions; e, /z, and v then serve 
only as labels, and the interaction is invariant under 
"substitutions." From this it was argued that one could 
obtain unitary symmetry. To examine this problem 
more closely it is useful to consider the simpler case of 
2-dimensional unitary symmetry, using p and n as our 
basic objects. First of all, one should define what sub
stitution invariance really means. It could either mean, 
using V(AB) to denote (AB\H\AB), 

(a) V(pn) = V(pp) = V(nn): V(pn) = V(iip) = V(pp) 
= V(nn), as long as the two particles are in a given 
spin and angular momentum state; or mean 

(b) V(pp) = Vinn) = VZ(l/y/2)(pn+np)], 
V(pn)=V(np); 
V{pp)=V{nn) 
with the same conditions as in (a). 

It is easy to see that the statement (a) is stronger than 
2-dimensional unitary symmetry, and the conditions 
(b) are weaker than and implied by the unitary sym
metry. The first line in (b) is identical to (a) because of 
the Pauli principle. But the fact that pp can transform 
into tin, and the consequent symmetriaztion and anti-
symmetrization with respect to p-n interchange does 
not provide any relations between the second and the 
third line in (b). This is because the state (1/V2) 
X(pp+nn) has just as much right to be assigned to
gether with the np and pn states on exchange sym
metry grounds as the {\/^l2)(pp—nn) state. In other 
words, the transformation p<^>n, n^->p has as much 
meaning a priori as the transformation p^—n, 
n<->p, since both will take the states pn and np into 
themselves. The state (l/^II)(pp—nn) gets singled out 
to be associated together with pn and np only when one 
invokes G parity as physically meaningful, but the use 
of G parity presumes, of course, isotopic spin invar
iance. Thus, "substitution invariance" in the sense of 
(b) is weaker than the unitary symmetry, and it is this 
weaker substitution invariance that we have used in 
this paper. 

APPENDIX II 

In this Appendix we assume p to be a bound state of 
NN and 0 to be a bound state of AA, and compute the 
contribution to the p mass-renormalization from the 

12 Z. Maki, M. Nakagawa, Y. Ohnuki, and S. Sakata, Progr. 
Theoret. Phys. (Kyoto) 23, 1174 (1960). See also E. Abers, F. 
Zachariasen, and C. Zemach, Phys. Rev. 132, 1831 (1963). 

NN loop alone, and the contribution to the <j> mass-
renormalization from the AA loop alone, taking the 
couplings gpNN and ĝ Al to be equal, but with MN9*MA. 
The integrals from the loop contributions are quadrati-
cally divergent, but their difference is convergent. 
This fact was pointed out to the author by Corn
wall. One finds, to first order in the mass differences 

m^2—m9
2~ (MA2—MN2) 

MA
2~ K^mj,2 , (Al) 

where 

[—U(M,M,K2)] 
L 5 M 2 Jit^Mj^.K^m^ 

_ / g 2 \ l | 16MA
2 

\ 4 r / 2ir 1 m^M A
2 - mf)1/2 

X t a n ^ r — T l . (A2) 
L(4MA

2-w/)1 / 2J J 

Likewise, if one assumes K* to be a bound state of NIL 
and compute the NA. loop, one finds 

mK*2-mp
2= (Mi.-MN)l(d/dMi) 

(A3) 
or 

MK-2-mP
2=^(Ms2-MN%(d/dM2) 

(A4) 

Because the derivative of U(Mi,M2,K2) is not sensitive 
to the values of M and K2, i.e., 

Z(d/dM2MM,M,K2)lM2=MA*.K>~ms 
- l(d/dM2)n(M,M,K2)^M^MN\K*=rnp* , 

we have evaluated it at M2=MA
2 in Eqs. (Al) to (A4). 

From this it also follows that 

m<{>
2—mK*2^inK*2--Mp2. (A5) 

If we substitute the values of the physical masses in 
Eq. (Al) and (A2), we find (g2/47r)~5, as compared 
to the known pNN coupling of roughly (gpNft2/4tw)~l. 

This computation is not to be taken seriously since it 
is a perturbation computation and since the assumption 
of gPNN=g<i>Al is really unphysical. It serves only to 
illustrate how the mass-squared dependence is natural 
in such a computation, that the relation (A5) obtains, 
and that Eq. (Al) relating the mass differences to se
lected self-energy contributions is numerically of the 
right order of magnitude. 

[Note added in proof. After this paper went to print, 
evidence for a E** at 1810 MeV was reported by G. A. 
Smith, J. S. Lindsey, J. J. Murray, J. Shafer, A. Galtieri, 
0. I. Dahl, P. Eberhard, W. H. Humphrey, G. R. 
Kalbfleisch, D. R. Ross, F. T. Shively, R. D. Tripp, 
Phys. Rev. Letters 13, 61 (1964). The mass is in remark
able agreement with the predicted value of 1808 MeV.] 


